Fall 2014 McNabb GDCTM Contest

Algebra One

NO Calculators Allowed

1. Fiji apples cost $\$ 4.68$ for a half-dozen and 90 cents a piece. Gala apples cost $\$ 5.39$ for a half-dozen and 97 cents a piece. If Sarah buys 8 Fiji apples and 9 Gala apples with a $\$ 20$ bill, how much change should she receive?
2. If a ounces of tea leaves brews b cups of tea and c cups fill one thermos, how many ounces of tea leaves must be brewed to fill d thermos's? Answer in terms of a, b, c, and d.
3. A brigade of over a thousand men can line up in 13 rows of equal length with 4 soldiers left over and it can line up in 19 rows of equal length with 1 soldier left over. What is the smallest possible size of the brigade?
4. Suppose that m and n are positive integers satisfying

$$
\frac{1}{77}=\frac{n}{7}-\frac{3}{m}
$$

Find the value of $m+n$.
5. Write down in order from least to greatest (separate by commas) these irrational numbers:

$$
1+\sqrt{3}, \quad 2-\sqrt{2}, \quad 2 \sqrt{2}, \quad \frac{\sqrt{2}}{2}
$$

6. Recall that $\binom{m}{n}$ stands for the number of ways of choosing n objects from a set of m objects. Name a solution m greater than 2 of the equation

$$
\binom{m+2}{3}=4\binom{m}{2}
$$

7. Simplify

$$
x-y-(3 x-4 y)-(x-y-(3 x-4 y))
$$

8. How many arrangements of the letters in GDCTM do not have any 3 consecutive letters in alphabetical order? So, for instance, you would count DGCTM but you would not count DGCMT.
9. Solve:

$$
|x-3| x-4| |=|7+2 x|
$$

10. Suppose n is a positive integer greater than or equal to 10 . For such n, define $f(n)$ to be sum of the units digit of n and twice the value of $f(m)$ where m is the integer that remains when the units digit of n is removed. In case n is a positive integer less than or equal to 9 , define $f(n)=n$. Find the value of $f(1145)$.
11. Simplify $\left(\sqrt{6}^{\sqrt{12}}\right)^{\sqrt{3}}$.
12. What is the first time after 1 pm that the minute and hour hand of a clock will overlap? Answer to the nearest second and express your answer in hours:minutes:seconds format.
13. Find two positive rational numbers r and s, neither of which are integers, so that $r^{2}+s^{2}=$ 13.
14. You are given three weighings involving twelve balls, of which eleven are the same weight but one is either heavier or lighter than the rest. The balls are numbered 1 through 12. The scale has two pans, a left and a right. When balls $1,4,7,10$ are put in the left pan and balls $3,6,9,12$ are put in the right pan, the left pan is heavier. When balls $3,6,9,10$ are put in the left pan and balls $2,5,8,12$ are put in the right pan, the left pan is lighter. When balls $3,4,8,12$ are put in the left pan and balls $2,6,7,11$ are put in the right pan, the right pan is heavier. Which ball is different and is it heavier or lighter than the rest?
15. The infinite expression

$$
\sqrt{9+\sqrt{9+\sqrt{9+\cdots}}}
$$

can be written in the form $\frac{a+\sqrt{b}}{c}$ where a, b, and c are positive integers with no common factor greater than one. Find the value of $a+b+c$.

