FALL 2011 McNabb GDCTM Contest Geometry

NO Calculators Allowed

- 1. Two sweaters, a pair of wool socks, and a coat cost \$180. One sweater and the coat cost \$130. How much does one sweater and a pair of wool socks cost?
 - **(A)** \$30
- **(B)** \$40
- **(C)** \$50
- **(D)** \$60
- **(E)** \$70

2. The expression

$$3((a+3b)4+2(5b+a))$$

is equivalent to the expression

- **(A)** 18a + 22b
- **(B)** 15a + 22b
- **(C)** 42a + 42b

- **(D)** 15a + 66b
- **(E)** 18a + 66b
- 3. In square *ABCD*, square *WXYZ* is inscribed in such a way that *W* is two-thirds of the way from *A* to *B*, *X* is two-thirds of the way from *B* to *C*, *Y* is two-thirds of the way from *C* to *D*, and *Z* is two-thirds of the way from *D* to *A*. If the area of *WXYZ* is 100, what is the area of *ABCD*?
 - **(A)** 150
- **(B)** 160
- **(C)** 170
- **(D)** 180
- **(E)** 200

- 4. From a regular deck of 52 cards three cards are dealt to you. What is the probability all three are red cards? Recall the red suites are hearts and diamonds.
 - **(A)** 2/17
- **(B)** 1/8
- (C) 2/15
- **(D)** 1/7
- **(E)** 2/13

- 5. If $f(3x+1) = \frac{2}{x+4}$, then f(x+3) =

 - (A) $\frac{6}{x+14}$ (B) $\frac{6}{3x+14}$ (C) $\frac{6}{x+11}$ (D) $\frac{6}{x+17}$ (E) $\frac{2}{x+14}$

- 6. A given cone's dimensions are modified as described in the responses below. Which response does **not** change the volume?
 - (A) double the height and halve the radius
 - **(B)** halve the height and double the radius
 - **(C)** quadruple the height and halve the radius
 - **(D)** halve the height and quadruple the radius
 - **(E)** quadruple the height and halve the radius twice
- 7. In how many ways can 10 be written as a sum of one or more positive integers if order does not matter and no integer can be repeated in a given sum? Thus, for instance, 4 + 6 is considered the same as 6 + 4, and 5 + 5 is not allowed.
 - **(A)** 6
- **(B)** 7
- **(C)** 8
- **(D)** 9
- **(E)** 10
- 8. Find the area enclosed by the graph of

$$|2y - 1| + |2y + 1| + 2|x| = 4$$

- (A) 2
- **(B)** 2.5
- **(C)** 3
- **(D)** 3.5
- **(E)** 4
- 9. An ordered pair (m, n) of positive integers is called a *three-pair* if the interior angle of a regular polygon with m sides is three times the exterior angle of a regular polygon with n sides. How many three-pairs exist?
 - **(A)** 0
- **(B)** 2
- **(C)** 4
- **(D)** 6
- **(E)** more than 6

- 10. In trapezoid PQRS as shown with PS \parallel QR, QR = 14, RS = 7, and \angle R = $2\angle P$, the length of PS is
 - **(A)** 15
- **(B)** 18
- **(C)** 21
- **(D)** 24
- **(E)** 27

- 11. If p people consume m pounds of mashed potato in h hours, then the pounds of mashed potato consumed by m people in p hours equals:
 - **(A)** *mph*
- **(B)** $\frac{m}{ph}$ **(C)** $\frac{m^2}{ph}$ **(D)** $\frac{m^2}{h}$ **(E)** $\frac{p^2}{m}$

12. Find the sum

$$1 \cdot 25 + 2 \cdot 24 + 3 \cdot 23 + 4 \cdot 22 + \dots + 24 \cdot 2 + 25 \cdot 1$$

- **(A)** 2500
- **(B)** 2725
- **(C)** 2800
- **(D)** 2825
- **(E)** 2925
- 13. How many of the numbers in this set below are irrational?

$$\{\sqrt{1.00}, \sqrt{1.01}, \sqrt{1.02}, \sqrt{1.03}, \cdots, \sqrt{3.98}, \sqrt{3.99}\}$$

- **(A)** 299
- **(B)** 294
- **(C)** 290
- **(D)** 286
- **(E)** 150

14. $\angle ABC$ is trisected by rays \overrightarrow{BD} and \overrightarrow{BE} as shown. If the degree measure of $\angle DBC$ equals 3x - 5 and that of $\angle ABC$ equals 5x - 22, find the value of x.

- **(A)** 17
- **(B)** 19
- **(C)** 23
- **(D)** 29
- **(E)** 31
- 15. How many factors of $51^5 \cdot 71^7 \cdot 91^9$ are perfect squares?
 - **(A)** 1
- **(B)** 60
- **(C)** 180
- **(D)** 192
- **(E)** 900
- 16. In acute triangle ABC, the intersection of its three altitudes, called the orthocenter, is labeled P. Given that AP = 6, BP = 4, and BC = 10, find AC.
 - (A) $\sqrt{120}$
- **(B)** $\sqrt{130}$
- **(C)** $\sqrt{140}$
- **(D)** $\sqrt{150}$
- **(E)** $\sqrt{160}$
- 17. If $a = \frac{1110}{1111}$, $b = \frac{2221}{2223}$, and $c = \frac{3331}{3334}$ which of the following is true?

- **(A)** a > b > c **(B)** b > a > c **(C)** c > a > b **(D)** c > b > a **(E)** b > c > a

- 18. In non-convex hexagon ABCDEF, AB = BC = CD = DE = EF = FA and $\angle A \cong \angle C \cong \angle E$. If the degree measure common to these three angles is x, what is the degree measure of $\angle ABC$ in terms of x?
 - **(A)** 120 + x
- **(B)** 180 x
- **(C)** 90 + 2x
- **(D)** 180 3x
- **(E)** 60 + 3x

- 19. In how many ways can a 4×4 nailed down board be tiled by eight 1×2 dominoes? One way to tile the board is shown below.
 - **(A)** 16
- **(B)** 32
- **(C)** 36
- **(D)** 40
- **(E)** 49

- 20. Let L_1 and L_2 be two intersecting lines. Let P be an arbitrary point of the plane determined by L_1 and L_2 . Consider the following sequence of transformations in this plane. First, the point P is reflected across line L_1 to point P. Second, point P is reflected across line P to point P
 - (A) a translation
 - (B) a reflection about some third line
 - **(C)** a rotation about the point of intersection of the lines by an angle equal to the smaller angle formed by the lines
 - **(D)** a rotation about the point of intersection of the lines by an angle equal to twice the smaller angle formed by the lines
 - (E) a translation followed by a reflection about some third line