Spring 2018 McNabb GDCTM Contest
 Geometry

NO Calculators Allowed/ 60 Minutes

1. A certain triangle has an area of 200 . If its height is doubled but its base kept the same, what is the area of the new triangle?
2. The points A, B, and C are collinear with $A B=18$ and $B C=32$. Find the sum of all possible values of $A C$.
3. What is the area of a triangle with side lengths 6,6 , and 4 ?
4. The positive integers are put in a rectangular grid in the following way

1	2	3	4	5	6	7	8	9
18	17	16	15	14	13	12	11	10
19	20	21	22	23	24	25	26	27
\vdots								

What is the number at the top of the column which contains the number 70 ?
5. Quadrilateral $A B C D$ has $A B=B C=15, C D=12$, and $D A=9$. If $\angle B=60^{\circ}$, find the area of $A B C D$.
6. A thin metal plate of uniform density has the shape of a quadrilateral with vertices at $(0,0)$, $(6,0),(4,4)$, and $(2,4)$. Find the coordinates of the center of mass of this plate.
7. Solve:

$$
|x-5|-|3 x+5|+|2 x+10|=4
$$

8. Events A, B, and C are mutually independent with $P(A)=0.2, P(B)=0.3$, and $P(C)=0.15$, find the probability of the event $A \cup B \cup C$.
9. Let a be a fixed positive real number. Find the area of the triangle formed by the three lines

$$
\begin{aligned}
y & =a x \\
y & =\frac{x}{a} \\
x+y & =a
\end{aligned}
$$

in terms of a.
10. For what value of the positive parameter a does the triangle with vertices $(0,0),(a, 2 \sqrt{a})$, and $(-2 / a, 1 / \sqrt{a})$ have the least possible area?
11. Three different colors are available to color the sides of a square. In how many different ways can this be done? Two ways are the same if one can be rotated into the other.
12. In trapezoid $A B C D$ with $A B \| C D$ and $A B / C D=1 / 6$, draw diagonals $A C$ and $B D$ intersecting at point E. Find the ratio of the area of $A B C D$ to the area of $A B E$.
13. Factor $x^{4}-6 x^{3}+9 x^{2}-4$ into two quadratic polynomials with integer coefficients.
14. Draw the circle inscribed in the triangle with sides 3,4 , and 5 . Then draw a second circle that is externally tangent to the first circle and is also tangent to the sides of length 3 and 5 . Find the radius of this second circle.
15. In $\triangle A B C$, the angle bisectors of $\angle B$ and $\angle C$ meet at point Q. The line through Q parallel to $A B$ meets side $B C$ at S. The line through Q parallel to $A C$ meets side $B C$ at T. The line through Q parallel to $B C$ meets sides $A B$ and $A C$ at points P and R respectively. If $A B=4$, $B C=9$, and $C A=11$, find the ratio $S T / P R$.

