Spring 2016 McNabB GDCTM Contest
 Algebra II

NO Calculators Allowed

1. A thirteen foot tree is growing at a rate of three feet per year while a forty-one foot tree is growing at a rate of two feet per year. In how many years will the two trees be the same height?
2. The front face of a rectangular box has area 72 . Its left face has area 48 while its top face has area 96 . Find the volume of the box.
3. Solve for x :

$$
\log _{2} 8-\log _{3} 9=\log _{5} x
$$

4. Find all solutions of

$$
20 x^{2}+33 x-27=0
$$

5. Find the sum

$$
1+i+i^{2}+i^{3}+i^{4}+i^{5}+\cdots+i^{2016}
$$

where $i=\sqrt{-1}$.
6. When the cubic polynomial $x^{3}-x^{2}+k x-2$ is divided by $x-3$ the remainder is k. Find the value of the constant k.
7. Find the maximum value of $x+y$ given that

$$
\begin{aligned}
3 x+11 y & \leq 198 \\
5 x+y & \leq 70
\end{aligned}
$$

8. Find the maximum number of regions of the plane formed by three ellipses lying in that plane.
9. Find the minimum value of the function $f(x, y)$ where

$$
f(x, y)=|20-x|+|x-y|+|y-50| .
$$

10. Let S_{n} equal the sum of the first n terms of an arithmetic sequence. If $S_{20}=$ 180 and $S_{40}=500$, find the value of S_{60}.
11. A lattice point in the plane is a point such that both of its coordinates are integers. How many such lattice points lie on the curve $x^{2}+2 y^{2}=81$?
12. Find the sum of all the solutions of the equation

$$
\frac{1}{x}-\frac{1}{x+1}=\frac{1}{3 x+15}
$$

13. Find the sum of the cubes of the roots of

$$
x^{3}-11 x^{2}+9=0
$$

14. In how many ways can 2016 be written as the sum of two or more consecutive integers?
15. For some constants a, b, and c, we have that

$$
\begin{aligned}
& p(x)=x^{3}-a x^{2}+b x-c \\
& p(x)=(x-a)(x-b)(x-c)
\end{aligned}
$$

Find the value of $p(4)$.

