FALL 2011 McNabb GDCTM Contest Calculus

NO Calculators Allowed

All variables are assumed to represent real numbers unless stated in the problem otherwise.

- 1. The number of even factors of 7^7 is
 - **(A)** 0
- **(B)** 2
- **(C)** 4
- **(D)** 6
- **(E)** 8
- 2. Recall that [x] denotes the greatest integer less than or equal to x. If $f(x) = [x^2] [x]^2$, find $f(\pi)$.
 - **(A)** -2
- **(B)** -1
- **(C)** 0
- **(D)** 1
- **(E)** 2
- 3. How many subsets of $\{a, b, c, d, e\}$ have an odd number of elements?
 - **(A)** 0
- **(B)** 2
- **(C)** 4
- **(D)** 8
- **(E)** 16
- 4. How many solutions are there to the equation $2^a = a^2$?
 - **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **(E)** 4
- 5. Given that the piecewise function

$$f(x) = \begin{cases} 4x & \text{if } x \le 0\\ ax^2 + bx + c & \text{if } 0 < x < 1\\ 6 - 3x & \text{if } x \ge 1 \end{cases}$$

is differentiable at all real numbers, find the value of a + b + c.

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5
- 6. The value of $13\sin(\tan^{-1}(5/12)) + 15\sin(\tan^{-1}(9/12))$ is
 - **(A)** 11
- **(B)** 12
- **(C)** 13
- **(D)** 14
- **(E)** 15

- 7. Let f(x) be differentiable at x = 3. If f(3) = 5 and $\left(\frac{1}{f}\right)'(3) = 4$ then what is the value of f'(3)?
 - **(A)** -100
- **(B)** -20
- **(C)** -1/4 **(D)** 1/4
- **(E)** 20

8. Determine the value of

$$\lim_{x\to 0}(\cos x)^{\frac{1}{\sin^2 x}}$$

- **(A)** 0
- **(B)** 1
- **(C)** *e*
- **(D)** e^2 **(E)** $e^{-\frac{1}{2}}$
- 9. The graph of $y = \sin ax + \sin bx$ is shown below for x in the interval $[0, 2\pi]$. Given that a and b are positive integers, with a + b large compared to a - band a > b, the value of a - b could be:
 - **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 5
- **(E)** 7

10. An eight by eight matrix has its (i, j)th entry given by f(i)g(j) where f(i) =4i - 3 and g(j) = 2j + 5. What is the sum of all of the entries of this matrix?

(A) 13440

(B) 13540

(C) 13640

(D) 13740

(E) 13840

11. If $f(x) = x^7 + x$, then what is the value of the second derivative of the inverse function of f at 2? That is, what is $(f^{-1})''(2)$?

(A) -7/128

(B) -7/16

(C) -21/256

(D) -3/64

(E) 3/64

12. Find the absolute maximum value of $f(x) = \sin^8 x \cos^4 x$ on the interval $[0, 2\pi].$

(A) $\frac{2^4}{3^6}$ (B) $\frac{1}{2^6}$ (C) $\frac{3^4}{2^{12}}$ (D) $\frac{3^6}{2^{10}}$ (E) $\frac{3^2}{2^6}$

13. Five horses are in a race. In how many ways can they finish if ties are allowed?

(A) 511

(B) 530

(C) 531

(D) 541

(E) 625

14. For the sequence given by $t_{n+1} = \frac{t_n + t_{n-1} + 1}{t_{n-2}}$, with $t_1 = 4$, $t_2 = 2$ and $t_3 = 5$, find t_{2011} .

(A) 4

(B) 2

(C) 5 **(D)** 7/5 **(E)** 16/5

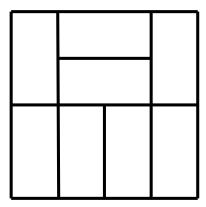
15. Find the radius of the sphere that contains the points (0, -3, -2), (0, -3, 2), (2,3,1), and (-2,3,1).

(A) $\frac{43}{12}$ (B) $\frac{\sqrt{1945}}{12}$ (C) $\frac{47}{12}$ (D) $\frac{\sqrt{2011}}{12}$ (E) $\frac{49}{12}$

16. A certain polynomial P(x) has the property that all its coefficients are nonnegative integers, none of which is larger than 6. If P(7) = 2011, what is P's coefficient of x^2 ?

(A) 2

(B) 3


(C) 4

(D) 5

(E) 6

- 17. If $a = \frac{1110}{1111}$, $b = \frac{2221}{2223}$, and $c = \frac{3331}{3334}$ which of the following is true?

- **(A)** a > b > c **(B)** b > a > c **(C)** c > a > b **(D)** c > b > a
- **(E)** b > c > a
- 18. Which of the following are always true about the pair of functions $y = a^x$ and $y = \log_a x$, where a > 1?
 - I. Both are increasing on their domains
 - II. For the same a > 1, their graphs never intersect
 - III. For the same a > 1, they are inverses of each other.
 - (A) I only
- **(B)** II only **(C)** I and II only
- **(D)** I and III only
- (E) I, II and III
- 19. In how many ways can a 4×4 nailed down board be tiled by eight 1×2 dominoes? One way to tile the board is shown below.
 - **(A)** 16
- **(B)** 32
- **(C)** 36
- **(D)** 40
- **(E)** 49

- 20. If a + b + c = 9 and ab + bc + ca = 7 then the maximum possible value of c is closest to
 - **(A)** 8
- **(B)** 8.5 **(C)** 9
- **(D)** 9.5
- **(E)** 10