Spring 2012 McNabb GDCTM Contest Calculus

NO Calculators Allowed

Note: all variables represent real numbers unless otherwise stated in the problem itself.

1. The value of $-3-3^{2}-3^{3}$ is equal to
(A) -41
(B) -40
(C) -39
(D) -37
(E) -36
2. What is the largest possible product of two positive odd integers whose sum is 40 ?
(A) 39
(B) 279
(C) 300
(D) 399
(E) 400
3. If $a \diamond b$ equals the lesser of $1 / a$ and $1 / b$, find the value of $-3 \diamond(-2 \diamond(-1 / 2))$.
(A) -3
(B) $-1 / 3$
(C) $-1 / 2$
(D) -2
(E) -1
4. What is the remainder when the sum

$$
1^{111}+2^{111}+3^{111}+4^{111}+5^{111}+6^{111}+7^{111}+8^{111}+9^{111}+10^{111}
$$

is divided by 11 ?
(A) 0
(B) 2
(C) 4
(D) 6
(E) 8
5. Distribute 14 points along a line segment. How many distinct ways exist for pairing the points via semicircles? The case of four points is pictured below.
(A) 10395
(B) 40320
(C) 60125
(D) 101245
(E) 135135

6. If $2+\ln x=\ln (x+2)$ then x must equal
(A) $\frac{2}{e^{2}-1}$
(B) $\frac{2}{e-1}$
(C) $\frac{1}{e^{2}-1}$
(D) $\frac{2}{e^{2}+1}$
(E) $\frac{1}{e^{2}+1}$
7. When expanded and simplified $\left(1-x+x^{2}-x^{3}\right)^{10}$ has the form

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{30} x^{30}
$$

What is the value of $c_{1}+c_{3}+c_{5}+\cdots+c_{29}$, the sum of the coefficients of all the odd powers of x ?
(A) -4^{19}
(B) -2^{20}
(C) -2^{19}
(D) 0
(E) 2^{19}
8. A small bug crawls on the surface of a $2 \times 2 \times 2$ cube from one corner to the far opposite corner along the gridlines formed by viewing this cube as an assembly of eight $1 \times 1 \times 1$ cubes. How many shortest paths of this type are possible? One example is shown.
(A) 54
(B) 64
(C) 90
(D) 96
(E) 120

9. Find the value of $r^{2} s^{2}+s^{2} t^{2}+t^{2} r^{2}$ if r, s, and t are the three possibly complex roots of the cubic polynomial $x^{3}+5 x^{2}-3 x+1$.
(A) -1
(B) 0
(C) 3
(D) 5
(E) 8
10. What is the sum

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{5}+\frac{1}{8}+\frac{1}{10}+\frac{1}{16}+\frac{1}{20}+\frac{1}{25}+\cdots
$$

which consists of the sum of the reciprocals of 1 and all the natural numbers whose prime factorizations contain no primes other than 2 or 5 ?
(A) $5 / 2$
(B) $7 / 2$
(C) $5 / 3$
(D) 2
(E) 3
11. In $\triangle A B C$, the medians $A D$ and $B E$ are perpendicular. If $A C=8$ and $B C=12$, what is the length of $A B$?
(A) 6
(B) 9
(C) $4 \sqrt{3}$
(D) 7
(E) $4 \sqrt{13 / 5}$
12. When the polynomial x^{2012} is divided by the polynomial $x^{2}+x+1$ what is the remainder $R(x)$?
(A) 1
(B) $x+1$
(C) $2 x-1$
(D) 0
(E) $-x-1$
13. Which of the following are equal to $\int_{a}^{b} f(x) d x$ for all continuous functions f and all values of the constants a, b, and k, with $k \neq 0$?
I. $-\int_{b}^{a} f(x) d x$
II. $\int_{a}^{b} f(a+b-x) d x$
III. $\int_{k a}^{k b} f(k x) d x$.
(A) none of them
(B) I only
(C) I and II only
(D) I and III only
(E) I, II and III
14. When the integrals listed below are arranged in order from least to greatest, which integral will be in the center?

$$
\int_{0}^{1} 1+x d x \quad \int_{0}^{1} \frac{1}{1+x} d x \quad \int_{0}^{1} \frac{1}{1+x+\frac{x^{2}}{2}} d x \quad \int_{0}^{1} e^{x} d x \quad \int_{0}^{1} e^{-x} d x
$$

(A) $\int_{0}^{1} 1+x d x$
(B) $\int_{0}^{1} \frac{1}{1+x} d x$
(C) $\int_{0}^{1} \frac{1}{1+x+\frac{x^{2}}{2}} d x$
(D) $\int_{0}^{1} e^{x} d x$
(E) $\int_{0}^{1} e^{-x} d x$
15. If $f(x)$ and $g(x)$ are differentiable functions and $F(x)=\int_{0}^{g(x)} f(t) d t$, then $F^{\prime}(1)$ equals
(A) $f(g(1))$
(B) $f(1) g^{\prime}(1)$
(C) $f^{\prime}(g(1)) g^{\prime}(1)$
(D) $f(g(1)) g^{\prime}(1)$
(E) $f^{\prime}(1) g^{\prime}(1)$
16. Evaluate $\int_{0}^{49} \frac{1}{\sqrt{16-\sqrt{x}}} d x$.
(A) $28 / 3$
(B) $32 / 3$
(C) 12
(D) $40 / 3$
(E) $44 / 3$
17. Given that the area of an ellipse with semimajor axis a and semiminor axis b is $\pi a b$, find the volume of the set of points $\left\{(x, y, z): \frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25} \leq 1\right\}$.
(A) 10π
(B) 20π
(C) 30π
(D) 40π
(E) 50π
18. John has just learned the arclength formula for functions of the form $y=f(x)$ and wishes to test this formula by measuring with a string the actual graph of $y=x^{2}$ from $x=0$ to $x=1$, with one unit in both the x and y direction measuring one inch. However, when he prints the graph of $y=x^{2}$ using his Computer Algebra System, he notes that while the unit in the x direction does measure exactly one inch, the unit in the y direction measures only threequarters of an inch. Which integral below will give the length in inches of the actual printed curve $y=x^{2}$ from $x=0$ to $x=1$?
(A) $\int_{0}^{1} \sqrt{1+\frac{9}{4} x^{2}} d x$
(B) $\int_{0}^{1} \sqrt{1+\frac{4}{9} x^{2}} d x$
(C) $\int_{0}^{1} \sqrt{1+4 x^{2}} d x$
(D) $\int_{0}^{1} \sqrt{1+9 x^{2}} d x$
(E) $\int_{0}^{1} \sqrt{1+6 x^{2}} d x$
19. Given that $\ln 2=1-1 / 2+1 / 3-1 / 4+1 / 5-1 / 6+\cdots$ and $\ln k=1+1 / 2+$ $1 / 3-3 / 4+1 / 5+1 / 6+1 / 7-3 / 8+\cdots+1 /(4 n+1)+1 /(4 n+2)+1 /(4 n+$ 3) $-3 /(4 n+4)+\cdots$, then $k=$
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7
20. A large circular metal plate has 12 equal smaller circular holes drilled out along its periphery to hold test tubes. Currently the plate holds no test tubes, but soon a robot arm will randomly place 5 test tubes on the plate. What is the probability that after all 5 of these test tubes are placed no two test tubes will be adjacent to one another?
(A) $5 / 12$
(B) $1 / 11$
(C) $1 / 24$
(D) $1 / 22$
(E) $1 / 48$

