Calculus

NO Calculators Allowed

Assume all variables are real unless otherwise stated in the problem.

1. What is the largest prime p satisfying $\left(\frac{16}{p}\right)^{2}>2$?
2. Find the value of x if $4^{5}+4^{5}+4^{5}=2^{x}+2^{x}+2^{x}$.
3. Find the integer m such that

$$
(\sqrt{2}-1)^{4}=\sqrt{m}-\sqrt{m-1}
$$

4. Find the value of n if $\log _{48} 12=\log _{n} 144$.
5. In how many different ways can 10 identical chairs be distributed to 4 distinct tables? A table may be left without any chairs at all. Answer in standard integer form.
6. In which quadrant (I, II, III, or IV) of the complex plane does $(-\sqrt{3}+3 i)^{17}$ lie?
7. Suppose that for all $1<x<3$

$$
|7 x+4-f(x)| \leq(|x-2|)^{3 / 2}
$$

Find the value of $f^{\prime}(2)$.
8. Find all values of the parameter r so that $y(x)=e^{r x}$ satisfies $y^{\prime \prime}(x)+5 y^{\prime}(x)=14 y(x)$ for all x.
9. Let $f(x)=x^{4}+a x^{3}+(a+2) x^{2}$. On what maximal open interval or union of open intervals of the parameter a is $f(x)$ concave up for all x ?
10. If f is a differentiable function on $[-3,3]$ satisfying $f(1)=-1, f(-1)=1, f^{\prime}(1)=2$ and $f^{\prime}(-1)=-2$, find the value of $(f \circ f \circ f \circ f)^{\prime}(1)$.
11. Find the largest value of the constant c so that

$$
x^{4}+9 \geq c x
$$

holds for all x.
12. Let g be twice-differentiable on the interval $[0,5]$. Let $g(0)=g^{\prime}(0)=0$ and suppose $g^{\prime \prime}(x) \leq 6$ for all x in $[0,5]$. What is the maximum possible value of $g(4)$?
13. The set of all tangent lines to a function $f(x)$ can be described as

$$
\{y=a(2 x-a)+2-4 x: a \in \mathbb{R}\}
$$

Find an algebraic formula for this function $f(x)$ in terms of x.
14. Find $g^{\prime \prime \prime}(0)$ if

$$
g(x)=\frac{x+1}{1-x^{3}-x^{4}}
$$

15. Determine the value of

$$
\lim _{x \rightarrow 0} \frac{\ln \left(1+2 x+x^{2}\right)+\ln \left(1-2 x+x^{2}\right)}{x\left(e^{x}-1\right)}
$$

