Fall 2014 McNabb GDCTM Contest

Calculus

NO Calculators Allowed

Assume all variables are real unless otherwise stated in the problem.

1. A number of students pitch in to buy a gift for their teacher. If each pays 8 dollars, the total collected would be too great by 3 dollars. If each pays 7 dollars, the total collected would be too little by 4 dollars. How much does the gift cost?
2. Write down in order from least to greatest (separate by commas) these irrational numbers:

$$
1+\sqrt{3}, \quad 2-\sqrt{2}, \quad 2 \sqrt{2}, \quad \frac{\sqrt{2}}{2}
$$

3. Solve the system

$$
\left\{\begin{array}{l}
\frac{x}{6}+\frac{4}{y}=2 \\
\frac{18}{x}+\frac{y}{2}=5
\end{array}\right.
$$

4. In right $\triangle A B C$, its inscribed circle meets legs $B A$ and $B C$ at points D and E respectively. If $B D=3$ and $D A=11$, find the length of leg $B C$.
5. Find one positive value of b so that $x=\tan ^{-1} b$ solves the equation

$$
\tan ^{2}(2 x)+\tan ^{2}(x)=10
$$

6. You are given three weighings involving twelve balls, of which eleven are the same weight but one is either heavier or lighter than the rest. The balls are numbered 1 through 12. The scale has two pans, a left and a right. When balls $1,4,7,10$ are put in the left pan and balls $3,6,9,12$ are put in the right pan, the left pan is heavier. When balls $3,6,9,10$ are put in the left pan and balls $2,5,8,12$ are put in the right pan, the left pan is lighter. When balls $3,4,8,12$ are put in the left pan and balls $2,6,7,11$ are put in the right pan, the right pan is heavier. Which ball is different and is it heavier or lighter than the rest?
7. Let the function y satisfy

$$
\frac{d y}{d x}=y^{2}(y-2)(y+2)
$$

If $y(0)=-1 / 5$ find the limit as $x \rightarrow \infty$ of $y(x)$.
8. Let

$$
f(x)=\left(\sum_{k=0}^{100} x^{k}\right) \cdot\left(\sum_{k=0}^{100}(-1)^{k} x^{k}\right)
$$

Determine the value of $f^{\prime}(1)$.
9. Let f be differentiable for all x. Let $f(1)=1 / 2$. Suppose for all $x \neq 0$ that $f(x)=f(1 / x)$. Let $g(x)=x^{4} f(x)$. Find the value of $g^{\prime}(1)$.
10. Let a be a positive constant. If the minimum value of $f(x)=e^{x}+a e^{-x}$ is $3 a$, find the value of a.
11. Determine

$$
\lim _{x \rightarrow 0}(\cos x)^{\cot ^{2} x}
$$

12. The infinite expression

$$
\sqrt{9+\sqrt{9+\sqrt{9+\cdots}}}
$$

can be written in the form $\frac{a+\sqrt{b}}{c}$ where a, b, and c are positive integers with no common factor greater than one. Find the value of $a+b+c$.
13. Find the equation of a line which is tangent to $y=x^{4}-8 x^{2}+3 x+5$ at two distinct points.
14. Let

$$
f(x)= \begin{cases}e^{3 x-\left(1 / x^{2}\right)}+2 e^{3 x} & \text { if } x \neq 0 \\ 2 & \text { if } x=0\end{cases}
$$

Determine the value of $f^{\prime}(0)$.
15. Find two positive rational numbers r and s, neither of which are integers, so that $r^{2}+s^{2}=$ 13.

