SPRING 2019 McNabb GDCTM CONTEST CALCULUS

NO Calculators Allowed/ 60 Minutes

Assume all variables are real unless otherwise stated in the problem.

- 1. The angle bisectors of the angles of $\triangle ABC$ meet at point D. If $\angle A = 100^{\circ}$, find the measure of $\angle BDC$ in degrees.
- 2. What is the number of positive factors of the number 20^{19} ?
- 3. Find the value of the limit

$$\lim_{n \to \infty} \frac{3n+2}{2n+3}$$

- 4. If $\cos 2\theta = 1/9$, find the least possible value of $\sin \theta$.
- 5. Find the equation of the tangent line to $x^3 + y^3 = \frac{28xy}{3}$ if the point of tangency is (3,1). Answer in form y = mx + b.
- 6. For what values of the constant a does $y = \sin(ax)$ solve the differential equation y'' + 9y = 0?
- 7. Let f(x) be continuous on the interval [0,5]. If $\int_0^4 f(x) dx = 3$ and $\int_4^5 f(x) dx = -7$, find the value of $\int_0^5 f(x) dx$
- 8. Find the value of $\int_0^{\pi/6} \sin 2x \cos 3x \, dx$
- 9. Let f(x) be differentiable on the interval [0,1]. If $\int_0^1 x f(x) dx = 3$ and $\int_0^1 x^2 f'(x) dx = 4$, then find the value of f(1).
- 10. Find the value of $\int_2^4 \frac{2x}{x^4 1} dx$
- 11. A spherical solid of radius 6 cm has density $\rho(r) = 10/r \text{ gm/cm}^3$, where r is the distance to the center of the sphere in cm. What is the mass in grams of this solid?
- 12. For what value of the real parameter a does the polynomial $x^4 3x^3 6x^2 + ax 24$ have a double root?

- 13. Determine the values of the real-valued parameters a and b which minimize $\int_0^1 (x^2 ax b)^2 dx$. Then put in the answer box the number a + b.
- 14. Let $F(x,y)=x^2+y^2$ and $\Omega=\{(x,y)\,|\,x^2+y^2\leq 1\}$. Find the average value of F(x,y) over the set Ω .
- 15. Find all values of the real parameter a such that the cubic $x^3 2x^2 + x + a$ has only real roots. Answer in interval notation form.