Spring 2017 McNabb GDCTM Contest
 Geometry

NO Calculators Allowed

1. Find the volume of a sphere of radius 3 .
2. In triangle $A B C$ with $\angle C$ right, a square built on side $A C$ has area 64 while a square built on side $A B$ has area 100. Find the length of side $B C$.
3. Billy sells $\$ 3471$ worth of chocolate boxes. He sells two kinds of boxes, a milk chocolate mix at $\$ 15$ per box, and a dark chocolate assortment at $\$ 14$ per box. If he sells a total of 236 boxes, how many boxes of the dark chocolate assortment does he sell?
4. Let

$$
\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{g}{h}=\frac{4}{5}
$$

then what is the value of

$$
\frac{a^{2}+c^{2}+e^{2}+g^{2}}{b^{2}+d^{2}+f^{2}+h^{2}}
$$

?
5. A circular pond with volume 36π cubic feet and depth 4 feet is having a circular walkway built around it. The walkway should be 4 feet wide and be sunk 2 feet into the ground. What volume of concrete is needed to build the walkway? Answer in cubic feet.
6. Given rectangle $A B C D$ let E and F be the midpoints of sides $A B$ and $C D$ respectively. Draw a circle with diameter $E F$ of length 10 . If the ratio of the area of the circle to the area of the rectangle is $\pi / 8$, find the perimeter of the rectangle.
7. A quarter-circle is inscribed in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, with its center at the vertex of the right angle. If the area of the quarter circle is 36π, what is the area of the triangle?
8. Convex hexagon $A B C D E F$ has

$$
\begin{gathered}
E F=F A=A B=B C=2 \\
\angle F=\angle A=\angle B=150^{\circ} \\
\angle E=\angle D=\angle C=90^{\circ}
\end{gathered}
$$

What is the area of this hexagon?
9. In $\triangle A B C, A B=16, B C=5$, and $\angle B=120$ degrees. Find $A C$.
10. Let (a, b) be fixed positive real numbers. Find the area of the parallelogram formed by the four lines

$$
\begin{aligned}
& y=a x-b \\
& y=a x+b \\
& y=-a x-b \\
& y=-a x+b
\end{aligned}
$$

in terms of a and b.
11. A right triangle has all integer side lengths, the smallest of which is eleven. Find the area of the triangle.
12. Rectangle $A B C D$ is a rectangular billiard table with $A D=1$ and $A B=3$. A ball is at point P on side $C D$ with $D P=1$. A player aims the ball at point Q on side $B C$ so that after three carooms (bounces) the ball will be headed back to where it started. Find $C Q$.
13. Circle R and smaller circle S are internally tangent to each other at point P and both externally tangent to line n, also at point P. A second line m cuts circle R at points B and E, circle S at points C and D, and line n at point A, so that points A, B, C, D, E occur in that order on m. If $A B=3$, and $B C=C D=1$, find $D E$.

14. A circle of area 36π is inscribed in square $A B C D$. Side $A B$ is extended past B to point E and side $A D$ is extended past D to point F in such a way that C lies on $E F$. Find the minimum possible area of $\triangle E A F$.
15. In rectangle $A B C D$, let F be the midpoint of $A B$, and points E and G be the midpoints of $A F$ and $F B$ respectively. Draw diagonal $A C$ and segments $D E, D F$ and $D G$ intersecting $A C$ at points H, I, J respectively. Find the ratio $H I / I J$.

