Fall 2013 McNabb GDCTM Contest
 Algebra Two

NO Calculators Allowed

1. If x ounces of cleaner clean y square feet of floor, how many square yards of floor can be cleaned by y gallons of this cleaner?
2. A set S of ordered pairs is said to be transitive if whenever (a, b) and (b, c) belong to S then so does (a, c). Is this set S below transitive?

$$
\begin{gathered}
S=\{(6,13),(4,8),(5,7),(6,10),(3,5),(10,13),(3,7),(1,5), \\
(3,10),(1,4),(1,7),(9,6)\}
\end{gathered}
$$

Answer Yes or No.
3. Find the coefficient of x^{2} when $\left(1+x+x^{2}\right)^{6}$ is expanded and simplified.
4. Find the area of the region $T=\{(x, y):|x|+3|y| \leq 4\}$.
5. Two congruent circles (in the same plane) do not intersect. Their centers are a distance 10 units apart. The length of their common internal tangent is 8 units. What is the radius of this pair of congruent circles?
6. Segment $A D$ is an altitude of equilateral triangle $A B C$ and segment $D E$ is an altitude of triangle $C D A$. Find the ratio $A E / E C$.
7. Let $f(x, y)=y x^{2}-(2 y+1) x+y$. Solve $f(x, 6)=0$.
8. If the point (x, y) satisfies

$$
x^{3}-71 x=y^{3}-71 y
$$

but does not satifsy $x=y$ then what is the value of $x^{2}+x y+y^{2}$?
9. Find the set of all values of the parameter a so that the graph of the parabola $y=a x^{2}+2 x+4 a$ never enters the third quadrant III. Recall that III $=\{(x, y): x<0$ and $y<0\}$.
10. Find the minimum possible value of the expression

$$
(x-9)^{2}+(x-7)^{2}+(x-5)^{2}+(x+5)^{2}+(x+7)^{2}+(x+9)^{2}
$$

11. Find the value of the index n if

$$
\sqrt[3]{r \sqrt[n]{\left(\frac{1}{r}\right) \sqrt[4]{r}}}=r^{\frac{7}{24}}
$$

12. In $\triangle A B C$ with point D on segment $A C$ so that $A D: D C=2: 5$, draw segment $B D$ with points E and F on $B D$ in order $B-E-F-D$. If the area of $\triangle E F C$ is 5 and the area of $\triangle A B C$ is 30 , find the area of $\triangle A E F$.
13. Let m and n be two relatively prime positive integers. Find the maximum possible value of the gcd of $m+24 n$ and $n+24 m$.
14. In which quadrant (I, II, III, or IV) of the complex plane does $(-\sqrt{3}+3 i)^{17}$ lie?
15. The point $(5,-4)$ lies on the graph of $y=-2 f(3(x+6))-8$. What corresponding point lies on the graph of $y=(1 / 2) f(x-2)+5$?
