## Spring 2013 McNabb GDCTM Contest <br> PreCalculus

## NO Calculators Allowed

1. A rectangle with area 125 has its sides in the ratio of $4: 5$. What is the perimeter of this rectangle?
(A) 18
(B) 22.5
(C) 36
(D) 45
(E) 54
2. In the repeating decimal 0.71771 , in which decimal place does the 2013th 7 appear?
(A) 671st
(B) 2014th
(C) 2015th
(D) 3354th
(E) 3355th
3. How many seconds are there in exactly six weeks?
(A) 7 !
(B) 8 !
(C) 9 !
(D) 10 !
(E) 12 !
4. The sum of a set of numbers is the sum of all the numbers in that set. How many subsets of the set $\{1,2,3,4,5,6,7\}$ have a sum of 12 ?
(A) 4
(B) 5
(C) 6
(D) 7
(E) 8
5. The value of

$$
1+2+3+4-5+6+7+8+9-10+\cdots+46+47+48+49-50
$$

is equal to
(A) 600
(B) 650
(C) 725
(D) 750
(E) 800
6. A solid opaque cube of side length 5 meters rests on flat ground. It is illuminated only by a powerful point-source of light located 5 meters above one of the cube's top corners. Find the area in square meters of the shadow cast by the cube on the ground.
(A) 75
(B) 85
(C) $50 \sqrt{2}$
(D) 91
(E) 100
7. Let $a, b$, and $n$ be constants, with $n$ a positive integer. If the first three terms of the binomial expansion of $(a+x)^{n}$ are, in ascending powers of $x$, equal to $3 b+6 b x+5 b x^{2}$, then find the value of $a+b+n$.
(A) 48
(B) 64
(C) 96
(D) 128
(E) 252
8. Which of these numbers is the least?
(A) $\log _{8} 144$
(B) $\log _{4} 72$
(C) $\log _{16} 288$
(D) $\log _{2} 48$
(E) $\log _{32} 576$
9. In cube $A B C D E F G H$ shown find $\cot \angle D B F$
(A) $2 / \sqrt{6}$
(B) $5 / 6$
(C) 1
(D) $\sqrt{2}$
(E) $6 / 5$

10. Which of the following equations has exactly two solutions over the real numbers?
(A) $x^{2}-6 x+9=0$
(B) $5 x=2(5-7 x)$
(C) $|x+8|=-5$
(D) $|x|=12$
(E) $x^{2}+1=0$
11. How many solutions in radians of $\sin 2 \theta=\cos 3 \theta$ lie in the interval $[0,2 \pi]$ ?
(A) 0
(B) 2
(C) 3
(D) 4
(E) 6
12. Recall that $i=\sqrt{-1}$. What is the sum of the infinite geometric series $\sum_{n=0}^{\infty}(i / 2)^{n}$ ?
(A) $-\frac{1}{5}+\frac{2}{5} i$
(B) $\frac{3}{5}-\frac{1}{5} i$
(C) $\frac{4}{5}+\frac{2}{5} i$
(D) 0
(E) $i$
13. Given the three points $(2013,-1863),(1776,-1812)$, and $(1181,-1492)$ in the coordinate plane, a fourth point $(a, b)$ is called a complementing point if it along with the given three points form the vertices of a parallelogram. Find the sum of all the coordinates of all the complementing points of the given three points.
(A) -197
(B) 0
(C) 216
(D) 631
(E) 783
14. When $x^{101}+x^{51}+1$ is divided by $x^{3}+1$, what is the remainder?
(A) 0
(B) $x$
(C) $3 x^{2}+4 x-2$
(D) -1
(E) $-x^{2}$
15. Let $f(x)=(1 / 4) x^{2}+b x+c$ where $b$ and $c$ are constants. If $b$ and $c$ are chosen randomly and independently from the set of digits $\{0,1,2,3,4,5,6,7,8,9\}$ what is the probability that the vertex of the parabola $y=f(x)$ lies on the $x$-axis?
(A) $1 / 25$
(B) $1 / 20$
(C) $1 / 10$
(D) $4 / 25$
(E) $1 / 5$
16. A careless librarian has reshelved the 5 volumes of an art encyclopedia in the correct order. Each volume has its spine facing out, which is correct of course, but has a $1 / 4$ probability of being upside down. What is the probability that exactly one pair of front covers are now face to face?
(A) $1 / 64$
(B) $2 / 31$
(C) $3 / 16$
(D) $5 / 24$
(E) $69 / 128$
17. The set of points in space equidistant from two skew lines is
(A) the empty set
(B) a single point
(C) a line
(D) the union of two intersecting lines
(E) none of the above
18. In triangle $A B C$, the angle bisector $C D$ of $\angle C$ has point $D$ on side $A B$. If $A C=1, B C=\sqrt{3}, A D=\sqrt{3}-1$ and $D B=3-\sqrt{3}$, then what is the length $C D$ ?
(A) $\sqrt{1+\sqrt{3}}$
(B) $\sqrt{6-3 \sqrt{3}}$
(C) $9 / 10$
(D) 1
(E) $1 / \sqrt{2}$

