Fall 2016 McNabb GDCTM Contest
 PreCalculus

NO Calculators Allowed

1. On a number line, the number $4 / 5$ ths of the way from a to $8 / 9$ is $7 / 9$. Find $3 a$.
2. In parallelogram $A B C D$, diagonals $A C$ and $B D$ intersect at point E. If $\angle B A C=70^{\circ}$ and $\angle B D C=40^{\circ}$, find $\angle A E B$.
3. How many zero's occur when the number $2^{23} * 3 * 5^{24} * 7$ is written out in standard form?
4. Simplify to standard complex number form:

$$
\frac{1}{i}+\frac{2}{i+1}
$$

5. Suppose that $A B C D E F G H$ is a regular octagon of side length 1 . What is the area of quadrilateral $A C E G$?

6. Find

$$
\sin \left(1^{\circ}\right) \cdot \sin \left(2^{\circ}\right) \cdot \sin \left(3^{\circ}\right) \cdot \ldots \cdot \sin \left(179^{\circ}\right)
$$

7. Solve the equation

$$
\log _{2}(x)-\log _{4}(x+1)=1
$$

for x.
8. Find positive integers x, y such that $x^{2}-10 y^{2}=1$
9. How many ordered triples of positive odd integers (m, n, p) satisfy

$$
m+n+p=21
$$

?
10. Let $f(x)=\frac{3 x+8}{2 x+5}$ and $g(x)=\frac{3+2 x}{3 x}$. Find the value of $\left(f \circ g^{-1}\right)^{-1}\left(\frac{11}{7}\right)$.
11. Find three odd positive integers a, b, and c, which satisfy

$$
\begin{aligned}
a^{2}+b^{2}+c^{2} & =3 a b c \\
a+b+c & =19
\end{aligned}
$$

12. Find two positive rational numbers r and s, neither of which are integers, so that $r^{2}+s^{2}=17$.
13. Find all the real and complex roots of the polynomial

$$
\begin{aligned}
(x+1)^{5}+(x+1)^{4}(x-1) & +(x+1)^{3}(x-1)^{2}+ \\
& +(x+1)^{2}(x-1)^{3}+(x+1)(x-1)^{4}+(x-1)^{5}
\end{aligned}
$$

14. A sphere is inscribed in a cone. The ratio of the height of the cone to the radius of the cone is known to be $\sqrt{3}$. What fraction of the volume of the cone is taken up by the sphere?
15. Compute the sum

$$
\sum_{k=0}^{\infty} \frac{k^{2}-k}{2^{k+1}}
$$

