Spring 2014 GDCTM/McNabb Calculus Contest

NO Calculators Allowed

1. The graph of the parametric curve $x=a \cos b t, y=\sin 3 t$ for $0 \leq t<2 \pi$ is shown below. If a and b are positive integers find the value of $a b$.

2. If x solves

$$
\frac{1}{x}=\frac{1}{x+1}+\frac{1}{x+2014}
$$

find the value of x^{2}.
3. Find the period of the function

$$
f(x)=\frac{\cos (x / 3)+\sec (x / 2)+\cot (x / 4)}{\sin (x / 5)+\tan (x / 8)+\csc (x / 9)}
$$

4. Let $a_{1}, a_{2}, a_{3}, \cdots$ be an infinite geometric sequence. Suppose that $\sum_{n=1}^{\infty} a_{n}=-9 / 20$ and $\sum_{n=4}^{\infty} a_{n}=$ $2 / 15$. Find the common ratio of this sequence.
5. Find the range of the function

$$
f(x)=\frac{4}{x-4}-\frac{9}{x-9}
$$

Give your answer in interval notation.
6. A data center has 3 distinct servers, labeled A, B, and C. Each web request is routed independently to one of these servers. A request is routed to A with probability $1 / 2$, to B with probability $1 / 3$, and to C with probability $1 / 6$. What is the expected number of web requests that are received immediately before the first request that is routed to C ?
7. Let f be a continuous, strictly increasing function. If $\int_{1}^{9} f(x) d x=52, f(1)=4$, and $f(9)=8$, find the value of $\int_{4}^{8} f^{-1}(x) d x$.
8. Find

$$
\lim _{a \rightarrow 0} \frac{\int_{0}^{a} \ln (1+a x) d x}{a^{3}}
$$

9. Let $f(x)$ be a function integrable on the interval $[-5,5]$. If $\int_{-5}^{3} f(x) d x=8$ and $\int_{0}^{3} f(x) d x=1$, find the value of $\int_{-5}^{0} 3 f(x) d x$.
10. Let g be a differentiable function on the interval $[-3,3]$ so that $g(1)=0$. If

$$
f(x)=\int_{0}^{g(x)} \frac{1}{t^{4}+4} d t
$$

find the value of $\lim _{x \rightarrow 1} \frac{g(x)}{f(x)}$.
11. Let $F(a)=\int_{0}^{a} x^{3}-a x d x$ for $a \geq 0$. Find the minimum value of $F(a)$.
12. Evaluate the integral

$$
\int_{0}^{\pi / 3} \sin (5 x) \sin (3 x) d x
$$

13. Define recursively the sequences x_{n} and y_{n} by

$$
\begin{aligned}
x_{n+1} & =\frac{1}{3} x_{n}+\frac{2}{3} y_{n} \\
y_{n+1} & =\frac{2}{3} x_{n}+\frac{1}{3} y_{n}
\end{aligned}
$$

If $x_{1}=30$ and $y_{1}=40$ find $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)$.
14. Let b be a real number and consider the cubic equation $x^{3}+3 b x+3=0$. The set of all real numbers b so that this cubic has three distinct real solutions is an interval of the form $(-\infty, r)$. The real number r has the form $r=-\sqrt[3]{\frac{a}{b}}$ where a and b are positive integers with no common factor greater than one. Find the value of $a+b$.
15. Evaluate the integral

$$
\int_{0}^{1} \frac{x^{\sqrt{2}}-1}{\ln x} d x
$$

