Spring 2018 McNabb GDCTM Contest
 Calculus

NO Calculators Allowed/ 60 Minutes

Assume all variables are real unless otherwise stated in the problem.

1. A tennis tournament has ten players registered to play singles. How many different first-round pairings are possible? In the first-round there are five matches and all ten players play.
2. Find the sum of the coefficients of all the even powers of x when

$$
\left(x^{5}-x^{2}+1\right)^{10}
$$

is expanded and simplified.
3. In how many ways can you choose five of these letters

$$
a, b, c, d, e, f, g, h, i, j, k, x, x, x, x, x
$$

?
4. Find $\frac{d^{10} y}{d x^{10}}$ if $y=e^{-x} \cos x$.
5. For which values of the parameter a are all the roots of the polynomial $x^{4}+a x^{2}+1$ real?
6. Find the absolute maximum value of the function $f(\theta)=\cos ^{3} \theta \sin \theta$ over the interval $[0, \pi / 2]$.
7. There exists a function continuous at each real number but differentiable at no real number. Answer True or False.
8. For what values of the real parameter a is the function

$$
f(x)=x^{4}+a x^{3}+a x^{2}+a x+a
$$

concave up on the entire real number line? Answer in interval notation.
9. Find

$$
\lim _{x \rightarrow \infty} \sqrt{x+\sqrt{x}}-\sqrt{x}
$$

10. Find the smallest possible value of the the constant m such that the inequality $m x-1+1 / x \geq 0$ holds for all $x>0$.
11. Find the maximum value of the expression

$$
16 x^{5}-20 x^{3}+5 x
$$

as x varies over the interval $-1 \leq x \leq 1$.
12. A certain radioactive isotope has a mean time to decay of 12 seconds. Given a very large number of such atoms, how many seconds do you have to wait until half of them have decayed?
13. Find the first four non-zero terms of the Taylor polynomial approximation centered at zero of the solution of the differential equation

$$
\frac{d y}{d x}=x y+1
$$

with initial condition $y(0)=3$.
14. Find a function $f(t)$ that satisfies for all x

$$
16 x^{2}+16 x+4=\int_{3 x+1}^{5 x+2} f(t) d t
$$

15. Find the maximum possible value of $2 a+b$ if $a \geq 0, b \geq 0$, and $8 a^{3}=8 a b-b^{3}$.
