Spring 2018 McNabb GDCTM Contest Calculus

NO Calculators Allowed/ 60 Minutes

Assume all variables are real unless otherwise stated in the problem.

- 1. A tennis tournament has ten players registered to play singles. How many different first-round pairings are possible? In the first-round there are five matches and all ten players play.
- 2. Find the sum of the coefficients of all the even powers of x when

$$(x^5 - x^2 + 1)^{10}$$

is expanded and simplified.

3. In how many ways can you choose five of these letters

$$a, b, c, d, e, f, g, h, i, j, k, x, x, x, x, x$$

?

- 4. Find $\frac{d^{10}y}{dx^{10}}$ if $y = e^{-x} \cos x$.
- 5. For which values of the parameter a are all the roots of the polynomial $x^4 + ax^2 + 1$ real?
- 6. Find the absolute maximum value of the function $f(\theta) = \cos^3 \theta \sin \theta$ over the interval $[0, \pi/2]$.
- 7. There exists a function continuous at each real number but differentiable at no real number. Answer True or False.
- 8. For what values of the real parameter a is the function

$$f(x) = x^4 + ax^3 + ax^2 + ax + a$$

concave up on the entire real number line? Answer in interval notation.

9. Find

$$\lim_{x \to \infty} \sqrt{x + \sqrt{x}} - \sqrt{x}$$

- 10. Find the smallest possible value of the the constant m such that the inequality $mx 1 + 1/x \ge 0$ holds for all x > 0.
- 11. Find the maximum value of the expression

$$16x^5 - 20x^3 + 5x$$

as x varies over the interval $-1 \le x \le 1$.

12. A certain radioactive isotope has a mean time to decay of 12 seconds. Given a very large number of such atoms, how many seconds do you have to wait until half of them have decayed?

1

13. Find the first four non-zero terms of the Taylor polynomial approximation centered at zero of the solution of the differential equation

$$\frac{dy}{dx} = xy + 1$$

with initial condition y(0) = 3.

14. Find a function f(t) that satisfies for all x

$$16x^2 + 16x + 4 = \int_{3x+1}^{5x+2} f(t) \, dt$$

15. Find the maximum possible value of 2a + b if $a \ge 0$, $b \ge 0$, and $8a^3 = 8ab - b^3$.

 $\mathbf{2}$